Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet
نویسندگان
چکیده
Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt– albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new highquality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325–1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5 % (between 10–14 July and 20–24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ∼ 10 and 30 % in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called “dark-band” region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function of bare ice expansion at the expense of snow, surface meltwater ponding, and melting of outcropped ice layers enriched with mineral materials, enPublished by Copernicus Publications on behalf of the European Geosciences Union. 906 S. E. Moustafa et al.: Multi-modal albedo distributions in the ablation area abling dust and impurities to accumulate. As climate change continues in the Arctic region, understanding the seasonal evolution of ice sheet surface types in Greenland’s ablation area is critical to improve projections of mass loss contributions to sea level rise.
منابع مشابه
The Cryosphere Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers
Greenland ice sheet mass loss has accelerated in the past decade responding to combined glacier discharge and surface melt water runoff increases. During summer, absorbed solar energy, modulated at the surface primarily by albedo, is the dominant factor governing surface melt variability in the ablation area. Using satellite-derived surface albedo with calibrated regional climate modeled surfac...
متن کاملSeasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet
Field and remote sensing observations in the ablation zone of the Greenland Ice Sheet have revealed a diverse range of ice surface characteristics, primarily reflecting the variable distribution of fine debris (cryoconite). This debris reduces the surface albedo and is therefore an important control on melt rates and ice sheet mass balance. Meanwhile, studies of ice sheet surface biological pro...
متن کاملClassification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR)
The Greenland ice sheet has been the subject of mass balance and melt measurements over the past two decades and its margins have shown significant thinning in recent years. Surface characteristics of the ice sheet margins are strongly modified by the annual process of snow accumulation and melt. In this work, we explore spatial and temporal relationships between near-infrared albedo and surfac...
متن کاملDecreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet
The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that...
متن کاملThe ablation zone in northeast Greenland: ice types, albedos and impurities
Ice types, albedos and impurity content are characterized for the ablation zone of the Greenland ice sheet in Kronprinz Christians Land (808N, 248W). Along this ice margin the width of the ablation zone is only about 8 km. The emergence and melting of old ice in the ablation zone creates a surface layer of dust that was originally deposited with snowfall high on the ice sheet. This debris cover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015